Lattices

Any calculation in Schwinger.jl will start with a SchwingerLattice. The number of sites N and number of flavors F are type parameters. Other parameters can be specified as keyword arguments:

  • periodic: whether the lattice is periodic
  • q: the integer charge of the fermions
  • θ2π: the $\theta$-angle (divided by $2\pi$)
  • a: the lattice spacing (in coupling units)
  • m: the physical mass (in coupling units); the mass shift is applied automatically
  • mlat: the mass parameter in the Hamiltonian
  • mprime: the coefficient of the hopping-type mass term

The sites of the lattice are indexed from 1 to N. The electric field operators are laid out as in the diagram below.

A Schwinger model lattice

Here $\alpha = 1,\ldots,F$ is a flavor index.

For details of how these parameters enter into the Hamiltonian, see here.

Schwinger.SchwingerLatticeType

SchwingerLattice{N,F}(;kwargs...)

Constructs a SchwingerLattice for the Schwinger model.

Arguments

  • periodic::Bool=false: Whether the lattice is periodic.
  • q::Int=1: Charge.
  • L::Union{Nothing,Real}=nothing: Length of the lattice.
  • a::Union{Nothing,Real}=nothing: Lattice spacing.
  • m::Union{Real,NTuple{N,Real},NTuple{F,Real},NTuple{N,NTuple{F,Real}}=0.: Mass parameter.
  • mlat::Union{Nothing,Real,NTuple{N,Real},NTuple{F,Real},NTuple{N,NTuple{F,Real}}=nothing: Local mass parameter.
  • mprime::Union{Real,NTuple{N,Real},NTuple{F,Real},NTuple{N,NTuple{F,Real}}=0.: Prime mass parameter.
  • θ2π::Union{Real,NTuple{N,Real}}=0.: Theta angle.

Returns

A SchwingerLattice object.

source