Lattices
Any calculation in Schwinger.jl
will start with a SchwingerLattice
. The number of sites N
and number of flavors F
are type parameters. Other parameters can be specified as keyword arguments:
periodic
: whether the lattice is periodicq
: the integer charge of the fermionsθ2π
: the $\theta$-angle (divided by $2\pi$)a
: the lattice spacing (in coupling units)m
: the physical mass (in coupling units); the mass shift is applied automaticallymlat
: the mass parameter in the Hamiltonianmprime
: the coefficient of the hopping-type mass term
The sites of the lattice are indexed from 1
to N
. The electric field operators are laid out as in the diagram below.
Here $\alpha = 1,\ldots,F$ is a flavor index.
For details of how these parameters enter into the Hamiltonian, see here.
Schwinger.SchwingerLattice
— TypeSchwingerLattice{N,F}(;kwargs...)
Constructs a SchwingerLattice for the Schwinger model.
Arguments
periodic::Bool=false
: Whether the lattice is periodic.q::Int=1
: Charge.L::Union{Nothing,Real}=nothing
: Length of the lattice.a::Union{Nothing,Real}=nothing
: Lattice spacing.m::Union{Real,NTuple{N,Real},NTuple{F,Real},NTuple{N,NTuple{F,Real}}=0.
: Mass parameter.mlat::Union{Nothing,Real,NTuple{N,Real},NTuple{F,Real},NTuple{N,NTuple{F,Real}}=nothing
: Local mass parameter.mprime::Union{Real,NTuple{N,Real},NTuple{F,Real},NTuple{N,NTuple{F,Real}}=0.
: Prime mass parameter.θ2π::Union{Real,NTuple{N,Real}}=0.
: Theta angle.
Returns
A SchwingerLattice
object.