States
Lattice states in Schwinger.jl are represented by the abstract type SchwingerState, with three descendants:
SchwingerBasisState: a state specified by the eigenvalues of occupation operators $\chi^\dagger_{n,\alpha}\chi_{n,\alpha}$ and $L_0$SchwingerEDState: a linear combination ofSchwingerBasisStatesSchwingerMPS: a matrix product state, stored as anMPSobject usingITensorMPS.jl
Given a state, we can find the expectation values of the occupation operators and electric field operators:
using Schwinger
lat = SchwingerLattice{6,1}(a = 10) # towards the lattice strong coupling limit ga -> infty
gs = groundstate(EDHamiltonian(lat))
occupations(gs), electricfields(gs)([0.9996009569748598; 0.0007976086592019031; … ; 0.999202391340798; 0.0003990430251401028;;], [-0.00039904302514015555; 0.0003985656340617476; … ; -0.0003990430251402126; -1.0977546996415732e-16;;])We can also evaluate the entanglement entropies of each bisection of the lattice:
using Schwinger
lat = SchwingerLattice{20,1}()
gs = groundstate(MPOHamiltonian(lat))
entanglements(gs)19-element Vector{Float64}:
0.5892661594332941
0.39444995102389974
0.5168663014805427
0.4537304990970738
0.4899161466432022
0.4701048867712392
0.4812980874019118
0.4748933776117984
0.47884978094410363
0.4759380630855685
0.4788497809439815
0.47489337761173883
0.4812980874018509
0.4701048867711649
0.4899161466431351
0.45373049909698887
0.5168663014802909
0.39444995102369124
0.5892661594332931Several other useful functions are detailed below.
Schwinger.SchwingerState — TypeSchwingerState{N,F}
Abstract type for Schwinger model states.
Schwinger.SchwingerBasisState — TypeSchwingerBasisState{N,F}(occupations, L0)
A Schwinger model basis state.
Schwinger.SchwingerEDState — TypeSchwingerEDState{N,F}(hamiltonian, coeffs)
A Schwinger model state represented as a linear combination of basis states.
Schwinger.SchwingerMPS — TypeSchwingerMPSState{N,F}(hamiltonian, psi)
A Schwinger model MPS.
Schwinger.occupation — Functionoccupation(state, site)
Return the expectations of χ†χ operators of each flavor on a given site.
Arguments
state::SchwingerMPS{N,F}: Schwinger model state.site::Int: the lattice site.
occupation(state, site)
Return the expectations of χ†χ operators of each flavor on a given site.
Arguments
state::SchwingerBasisState: Schwinger model basis state.site::Int: the lattice site.
occupation(state, site)
Return the expectations of χ†χ operators of each flavor on a given site.
Arguments
state::SchwingerEDState: Schwinger model basis state.site::Int: the lattice site.
Schwinger.occupations — Functionoccupations(state)
Return an NxF matrix of the expectations of χ†χ operators on each site.
Arguments
state::SchwingerMPS{N,F}: Schwinger model state.
occupations(state)
Return an NxF matrix of the expectations of χ†χ operators on each site.
Arguments
state::SchwingerBasisState: Schwinger model basis state.
occupations(state)
Return an NxF matrix of the expectations of χ†χ operators on each site.
Arguments
state::SchwingerEDState: Schwinger model basis state.
Schwinger.charge — Functioncharge(state, site)
Return the expectation value of the charge operator on site site.
Arguments
state::SchwingerState: Schwinger model state.site::Int: site.
Schwinger.charges — Functioncharges(state)
Return a list of the expectations of Q operators on each site and for each known eigenstate.
Arguments
state::SchwingerState: Schwinger model state.
Schwinger.electricfield — Functionelectricfield(state, link)
Return the expectation of (L + θ/2π) on the link link.
Arguments
state::SchwingerState: Schwinger model state.link::Int: link.
Schwinger.electricfields — Functionelectricfields(state)
Return a list of the expectations of (L + θ/2π) operators on each link.
Arguments
state::SchwingerState: Schwinger model state.
Schwinger.entanglement — Functionentanglement(state, bisection)
Return the von Neumann entanglement entropy -tr(ρₐ log(ρₐ)), where a is the subsystem of sites 1..bisection
Arguments
state::SchwingerEDState: Schwinger model state.bisection::Int: bisection index.
entanglement(state, bisection)
Return the von Neumann entanglement entropy -tr(ρₐ log(ρₐ)), where a is the subsystem of sites 1..bisection
Arguments
state::SchwingerMPS: Schwinger model state.bisection::Int: bisection index.
Schwinger.entanglements — Functionentanglements(state)
Return a list of the von Neumann entanglement entropies for each bisection of the lattice.
Arguments
state::SchwingerState: Schwinger model state.
Schwinger.energy — Functionenergy(state)
Return the expectation value of the Hamiltonian.
Arguments
state::SchwingerEDState: Schwinger model state.
energy(state)
Return the expectation value of the Hamiltonian.
Arguments
state::SchwingerBasisState: Schwinger model basis state.
Schwinger.L₀ — FunctionL₀(state)
Return the expectation value of L₀.
Arguments
state::SchwingerState: Schwinger model state.
Schwinger.scalar — Functionscalar(state)
Return the expectation value of the scalar condensate, ⟨H_mass⟩/L.
Arguments
state::SchwingerState: Schwinger model state.
Schwinger.scalardensity — Functionscalardensity(state, site)
Return the scalar density at site site.
Arguments
state::SchwingerState: Schwinger model state.site::Int: site.
Schwinger.scalardensities — Functionscalardensities(state)
Return the list of scalar densities of state on sites 1 through N.
Arguments
state::SchwingerState: Schwinger model state.site::Int: site.
Schwinger.pseudoscalar — Functionpseudoscalar(state)
Return the expectation value of the pseudoscalar condensate, ⟨H_hoppingmass⟩/L.
Arguments
state::SchwingerState: Schwinger model state.
Schwinger.pseudoscalardensity — Functionpseudoscalardensity(state, n)
Return the pseudoscalar density at site n.
Arguments
state::SchwingerState: Schwinger model state.n::Int: site.
Schwinger.pseudoscalardensities — Functionpseudoscalardensities(state)
Return the list of pseudoscalar densities of state on sites 1 through N.
Arguments
state::SchwingerState: Schwinger model state.site::Int: site.