States

Lattice states in Schwinger.jl are represented by the abstract type SchwingerState, with three descendants:

  • SchwingerBasisState: a state specified by the eigenvalues of occupation operators $\chi^\dagger_{n,\alpha}\chi_{n,\alpha}$ and $L_0$
  • SchwingerEDState: a linear combination of SchwingerBasisStates
  • SchwingerMPS: a matrix product state, stored as an MPS object using ITensorMPS.jl

Given a state, we can find the expectation values of the occupation operators and electric field operators:

using Schwinger
lat = SchwingerLattice{6,1}(a = 10) # towards the lattice strong coupling limit ga -> infty
gs = groundstate(EDHamiltonian(lat))

occupations(gs), electricfields(gs)
([0.9996009569748598; 0.0007976086592019031; … ; 0.999202391340798; 0.0003990430251401028;;], [-0.00039904302514015555; 0.0003985656340617476; … ; -0.0003990430251402126; -1.0977546996415732e-16;;])

We can also evaluate the entanglement entropies of each bisection of the lattice:

using Schwinger
lat = SchwingerLattice{20,1}()
gs = groundstate(MPOHamiltonian(lat))
entanglements(gs)
19-element Vector{Float64}:
 0.5892661594332941
 0.39444995102389974
 0.5168663014805427
 0.4537304990970738
 0.4899161466432022
 0.4701048867712392
 0.4812980874019118
 0.4748933776117984
 0.47884978094410363
 0.4759380630855685
 0.4788497809439815
 0.47489337761173883
 0.4812980874018509
 0.4701048867711649
 0.4899161466431351
 0.45373049909698887
 0.5168663014802909
 0.39444995102369124
 0.5892661594332931

Several other useful functions are detailed below.

Schwinger.occupationFunction

occupation(state, site)

Return the expectations of χ†χ operators of each flavor on a given site.

Arguments

  • state::SchwingerMPS{N,F}: Schwinger model state.
  • site::Int: the lattice site.
source

occupation(state, site)

Return the expectations of χ†χ operators of each flavor on a given site.

Arguments

  • state::SchwingerBasisState: Schwinger model basis state.
  • site::Int: the lattice site.
source

occupation(state, site)

Return the expectations of χ†χ operators of each flavor on a given site.

Arguments

  • state::SchwingerEDState: Schwinger model basis state.
  • site::Int: the lattice site.
source
Schwinger.occupationsFunction

occupations(state)

Return an NxF matrix of the expectations of χ†χ operators on each site.

Arguments

  • state::SchwingerMPS{N,F}: Schwinger model state.
source

occupations(state)

Return an NxF matrix of the expectations of χ†χ operators on each site.

Arguments

  • state::SchwingerBasisState: Schwinger model basis state.
source

occupations(state)

Return an NxF matrix of the expectations of χ†χ operators on each site.

Arguments

  • state::SchwingerEDState: Schwinger model basis state.
source
Schwinger.chargeFunction

charge(state, site)

Return the expectation value of the charge operator on site site.

Arguments

  • state::SchwingerState: Schwinger model state.
  • site::Int: site.
source
Schwinger.chargesFunction

charges(state)

Return a list of the expectations of Q operators on each site and for each known eigenstate.

Arguments

  • state::SchwingerState: Schwinger model state.
source
Schwinger.electricfieldFunction

electricfield(state, link)

Return the expectation of (L + θ/2π) on the link link.

Arguments

  • state::SchwingerState: Schwinger model state.
  • link::Int: link.
source
Schwinger.electricfieldsFunction

electricfields(state)

Return a list of the expectations of (L + θ/2π) operators on each link.

Arguments

  • state::SchwingerState: Schwinger model state.
source
Schwinger.entanglementFunction

entanglement(state, bisection)

Return the von Neumann entanglement entropy -tr(ρₐ log(ρₐ)), where a is the subsystem of sites 1..bisection

Arguments

  • state::SchwingerEDState: Schwinger model state.
  • bisection::Int: bisection index.
source

entanglement(state, bisection)

Return the von Neumann entanglement entropy -tr(ρₐ log(ρₐ)), where a is the subsystem of sites 1..bisection

Arguments

  • state::SchwingerMPS: Schwinger model state.
  • bisection::Int: bisection index.
source
Schwinger.entanglementsFunction

entanglements(state)

Return a list of the von Neumann entanglement entropies for each bisection of the lattice.

Arguments

  • state::SchwingerState: Schwinger model state.
source
Schwinger.energyFunction

energy(state)

Return the expectation value of the Hamiltonian.

Arguments

  • state::SchwingerEDState: Schwinger model state.
source

energy(state)

Return the expectation value of the Hamiltonian.

Arguments

  • state::SchwingerBasisState: Schwinger model basis state.
source
Schwinger.L₀Function

L₀(state)

Return the expectation value of L₀.

Arguments

  • state::SchwingerState: Schwinger model state.
source
Schwinger.scalarFunction

scalar(state)

Return the expectation value of the scalar condensate, ⟨H_mass⟩/L.

Arguments

  • state::SchwingerState: Schwinger model state.
source
Schwinger.scalardensityFunction

scalardensity(state, site)

Return the scalar density at site site.

Arguments

  • state::SchwingerState: Schwinger model state.
  • site::Int: site.
source
Schwinger.scalardensitiesFunction

scalardensities(state)

Return the list of scalar densities of state on sites 1 through N.

Arguments

  • state::SchwingerState: Schwinger model state.
  • site::Int: site.
source
Schwinger.pseudoscalarFunction

pseudoscalar(state)

Return the expectation value of the pseudoscalar condensate, ⟨H_hoppingmass⟩/L.

Arguments

  • state::SchwingerState: Schwinger model state.
source
Schwinger.pseudoscalardensityFunction

pseudoscalardensity(state, n)

Return the pseudoscalar density at site n.

Arguments

  • state::SchwingerState: Schwinger model state.
  • n::Int: site.
source
Schwinger.pseudoscalardensitiesFunction

pseudoscalardensities(state)

Return the list of pseudoscalar densities of state on sites 1 through N.

Arguments

  • state::SchwingerState: Schwinger model state.
  • site::Int: site.
source