States
Lattice states in Schwinger.jl
are represented by the abstract type SchwingerState
, with three descendants:
SchwingerBasisState
: a state specified by the eigenvalues of occupation operators $\chi^\dagger_{n,\alpha}\chi_{n,\alpha}$ and $L_0$SchwingerEDState
: a linear combination ofSchwingerBasisState
sSchwingerMPS
: a matrix product state, stored as anMPS
object usingITensorMPS.jl
Given a state, we can find the expectation values of the occupation operators and electric field operators:
using Schwinger
lat = SchwingerLattice{6,1}(a = 10) # towards the lattice strong coupling limit ga -> infty
gs = groundstate(EDHamiltonian(lat))
occupations(gs), electricfields(gs)
([0.9996009569748598; 0.0007976086592019031; … ; 0.999202391340798; 0.0003990430251401028;;], [-0.00039904302514015555; 0.0003985656340617476; … ; -0.0003990430251402126; -1.0977546996415732e-16;;])
We can also evaluate the entanglement entropies of each bisection of the lattice:
using Schwinger
lat = SchwingerLattice{20,1}()
gs = groundstate(MPOHamiltonian(lat))
entanglements(gs)
19-element Vector{Float64}:
0.5892661594332941
0.39444995102389974
0.5168663014805427
0.4537304990970738
0.4899161466432022
0.4701048867712392
0.4812980874019118
0.4748933776117984
0.47884978094410363
0.4759380630855685
0.4788497809439815
0.47489337761173883
0.4812980874018509
0.4701048867711649
0.4899161466431351
0.45373049909698887
0.5168663014802909
0.39444995102369124
0.5892661594332931
Several other useful functions are detailed below.
Schwinger.SchwingerState
— TypeSchwingerState{N,F}
Abstract type for Schwinger model states.
Schwinger.SchwingerBasisState
— TypeSchwingerBasisState{N,F}(occupations, L0)
A Schwinger model basis state.
Schwinger.SchwingerEDState
— TypeSchwingerEDState{N,F}(hamiltonian, coeffs)
A Schwinger model state represented as a linear combination of basis states.
Schwinger.SchwingerMPS
— TypeSchwingerMPSState{N,F}(hamiltonian, psi)
A Schwinger model MPS.
Schwinger.occupation
— Functionoccupation(state, site)
Return the expectations of χ†χ operators of each flavor on a given site.
Arguments
state::SchwingerMPS{N,F}
: Schwinger model state.site::Int
: the lattice site.
occupation(state, site)
Return the expectations of χ†χ operators of each flavor on a given site.
Arguments
state::SchwingerBasisState
: Schwinger model basis state.site::Int
: the lattice site.
occupation(state, site)
Return the expectations of χ†χ operators of each flavor on a given site.
Arguments
state::SchwingerEDState
: Schwinger model basis state.site::Int
: the lattice site.
Schwinger.occupations
— Functionoccupations(state)
Return an NxF matrix of the expectations of χ†χ operators on each site.
Arguments
state::SchwingerMPS{N,F}
: Schwinger model state.
occupations(state)
Return an NxF matrix of the expectations of χ†χ operators on each site.
Arguments
state::SchwingerBasisState
: Schwinger model basis state.
occupations(state)
Return an NxF matrix of the expectations of χ†χ operators on each site.
Arguments
state::SchwingerEDState
: Schwinger model basis state.
Schwinger.charge
— Functioncharge(state, site)
Return the expectation value of the charge operator on site site
.
Arguments
state::SchwingerState
: Schwinger model state.site::Int
: site.
Schwinger.charges
— Functioncharges(state)
Return a list of the expectations of Q operators on each site and for each known eigenstate.
Arguments
state::SchwingerState
: Schwinger model state.
Schwinger.electricfield
— Functionelectricfield(state, link)
Return the expectation of (L + θ/2π) on the link link
.
Arguments
state::SchwingerState
: Schwinger model state.link::Int
: link.
Schwinger.electricfields
— Functionelectricfields(state)
Return a list of the expectations of (L + θ/2π) operators on each link.
Arguments
state::SchwingerState
: Schwinger model state.
Schwinger.entanglement
— Functionentanglement(state, bisection)
Return the von Neumann entanglement entropy -tr(ρₐ log(ρₐ)), where a is the subsystem of sites 1..bisection
Arguments
state::SchwingerEDState
: Schwinger model state.bisection::Int
: bisection index.
entanglement(state, bisection)
Return the von Neumann entanglement entropy -tr(ρₐ log(ρₐ)), where a is the subsystem of sites 1..bisection
Arguments
state::SchwingerMPS
: Schwinger model state.bisection::Int
: bisection index.
Schwinger.entanglements
— Functionentanglements(state)
Return a list of the von Neumann entanglement entropies for each bisection of the lattice.
Arguments
state::SchwingerState
: Schwinger model state.
Schwinger.energy
— Functionenergy(state)
Return the expectation value of the Hamiltonian.
Arguments
state::SchwingerEDState
: Schwinger model state.
energy(state)
Return the expectation value of the Hamiltonian.
Arguments
state::SchwingerBasisState
: Schwinger model basis state.
Schwinger.L₀
— FunctionL₀(state)
Return the expectation value of L₀.
Arguments
state::SchwingerState
: Schwinger model state.
Schwinger.scalar
— Functionscalar(state)
Return the expectation value of the scalar condensate, ⟨H_mass⟩/L.
Arguments
state::SchwingerState
: Schwinger model state.
Schwinger.scalardensity
— Functionscalardensity(state, site)
Return the scalar density at site site
.
Arguments
state::SchwingerState
: Schwinger model state.site::Int
: site.
Schwinger.scalardensities
— Functionscalardensities(state)
Return the list of scalar densities of state
on sites 1 through N.
Arguments
state::SchwingerState
: Schwinger model state.site::Int
: site.
Schwinger.pseudoscalar
— Functionpseudoscalar(state)
Return the expectation value of the pseudoscalar condensate, ⟨H_hoppingmass⟩/L.
Arguments
state::SchwingerState
: Schwinger model state.
Schwinger.pseudoscalardensity
— Functionpseudoscalardensity(state, n)
Return the pseudoscalar density at site n
.
Arguments
state::SchwingerState
: Schwinger model state.n::Int
: site.
Schwinger.pseudoscalardensities
— Functionpseudoscalardensities(state)
Return the list of pseudoscalar densities of state
on sites 1 through N.
Arguments
state::SchwingerState
: Schwinger model state.site::Int
: site.